ON A MODEL FOR EPIDEMIC SPREAD WITH INTERPOPULATION CONTACT AND REPELLENT TAXIS

Dedicated to Messoud Efendiev on the occasion of his 65th birthday

CHIGANGA SAMSON RUOJA*
Dar es Salaam University College of Education
P.O.Box 2329, Dar es Salaam, Tanzania
(E-mail: samson.chiganga@yahoo.com)

CHRISTINA SURULESCU
Technische Universität Kaiserslautern, Felix-Klein-Zentrum für Mathematik
Paul-Ehrlich-Str. 31, 67663 Kaiserslautern, Germany
(E-mail: surulescu@mathematik.uni-kl.de)

and

ANNA ZHIGUN
Queen’s University Belfast, School of Mathematics and Physics
University Road, Belfast BT7 1NN, Northern Ireland, UK
(E-mail: A.Zhigun@qub.ac.uk)

Abstract.
We study a PDE model for dynamics of susceptible-infected interactions. The dispersal of susceptibles is via diffusion and repellent taxis as they move away from the increasing density of infected. The diffusion of infected is a nonlinear, possibly degenerating term in nondivergence form. We prove the existence of so-called weak-strong solutions in 1D for a positive susceptible initial population. For dimension $N \geq 2$ and nonnegative susceptible initial density we show the existence of supersolutions. Numerical simulations are performed for different scenarios and illustrate the space-time behaviour of solutions.

*supported by the German Academic Exchange Service (DAAD), grant #57191713.
Communicated by Messoud Efendiyev; Received February 11, 2019
AMS Subject Classification: 35Q92, 35K55, 92D30.
Keywords: epidemic model, nonlinear diffusion with interpopulation contact, repellent taxis, non-divergence form, weak solution, weak supersolution.