VISCOUS CAHN–HILLIARD EQUATION
WITH DIRICHLET BOUNDARY CONDITION

KEICHIRO KAGAWA
Major in Pure and Applied Physics, Graduate School of Advanced Science and Engineering,
Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo, 169-8555, JAPAN
(E-mail: heiankyo615@fuji.waseda.jp)

and

MITSUHARU ÔTANI
Department of Applied Physics, School of Science and Engineering,
Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo, 169-8555, JAPAN
(E-mail: otani@waseda.jp)

Abstract. In this paper, we show the existence of solutions of the initial value problem for the viscous Cahn–Hilliard equation with the homogeneous Dirichlet boundary condition. In the previous researches, the existence of strong solutions is shown for the case where the Sobolev subcritical condition is imposed for the nonlinear term. We exclude this restriction by decomposing the nonlinear term into the difference between a maximal monotone term and a perturbation term, and prove the existence of the strong solutions to the initial boundary value problem of the viscous Cahn–Hilliard equation. Furthermore, some smoothing effect of the solutions is also discussed. Our proof relies on the abstract theory of the evolution equation governed by the subdifferential operator.

Communicated by Editors; Received February 5, 2020
AMS Subject Classification: 00A00, 00A00, 00A00.
Keywords: Initial boundary value problem, Dirichlet boundary condition, existence of global solutions, viscous Cahn–Hilliard equation, maximal monotone operator, subdifferential operator, locally Lipschitz perturbation.